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Abstract

We describe a biology-inspired time-stepped simulation of a neural network that structures
itself by competing against mutated copies of itself. The simulated neurons seek to capture the
functional essence of a biological neuron as a function of time. We find a condition between
the inputs to the neuron and its activation potential that needs to be met for the neuron
to fire continuously, and conjecture that a similar condition may also exist in biology. The
neural network encodes synaptic chemical concentrations between neurons that changes over
the course of a network’s lifetime based on simple rules of reinforcement and decay. The
network also encodes the physical distance or connectivity between neurons that evolves over
generations through natural selection. Multiple copies of these neural networks are instantiated
in a game world, each with small random mutations in the connectivities.
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1 The simulated neuron

The simulated neuron used in this system tries to capture, through a time-stepped simulation, the
functional essence of a biological neuron. A neuron receives input potentials qi (between -1 and
1) from the output of several other neurons, over time. The neuron sums up these potentials, at
every time-step, and if the sum exceeds a threshold Qth it fires an activation potential that is then
communicated via synapses to other neurons. After firing, the neuron’s own potential drops to a
small value below the baseline of 0 and then decays back to 0 by a factor of kp at every time-step.
This decay constant for the potential, kp, is always applied on the neuron and causes the potential
to decay back to 0 even if the threshold has not been met and the neuron not been fired. Fig. 1
shows the potential of a single neuron that has been fired (red) and one that has not been fired
(blue).

Figure 1: The potential of a single neuron is plotted as a function of time. The red curve is for a
neuron that is stimulated with a potential greater than the threshold Qth = 0.4 at time 50. It fires
on its output and then drops its potential to -0.01. Thereafter, the potential decays by a factor of
kp = 0.9 every time-step back to 0. In blue is the same neuron stimulated with a potential less
than Qth. It does not fire and the potential simply decays by kp back to 0.

1.1 Output frequency from input frequency

We can derive the frequency at which the neuron will fire if it is stimulated with a potential of q
applied every t time-steps, i.e. with a frequency of fin = 1/t. Since the potential will decay by a
factor of kp at every time-step, the potential will reach Qth after n time steps where:
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q(1 + ktp + k2tp ...+ kntp ) = Qth

This is the sum of a geometric series, and we can write it in closed form as Eq. 1.

Qth

q
=

1 − kt(n+1)

1 − kt
(1)

This can be solved for n to derive the output frequency of the neuron fout = 1/nt. The solution
for n is written in Eq. 2.

n =
log(1 − Qth

q (1 − kt))

t log(k)
− 1 (2)

For this to be true, i.e. for the total potential to ever reach Qth, the argument of the logarithm
in the numerator has to be positive. This implies a minimum frequency of input firing given by
Eq. 3. If this condition is not met, the neuron does not reach the firing threshold as shown by the
blue curve in Fig. 2a. When the condition is met, the neuron repeatedly fires in intervals of nt
given by Eq. 2 as shown by the red curve in Fig. 2b. We conjecture that such a condition may also
exist for the firing of biological neurons.

1

fin
= t <

log(1 − q/Qth)

log(k)
(3)

Figure 2: (a) LEFT. The neuron is programmed with a potential threshold Qth = 0.4, and a
potential decay constant kp = 0.90. It is stimulated with potentials of q = 0.1 applied every t = 3
timesteps. According to Eq. 3, t needs to be less than 2.7 for the neuron to fire and therefore the
neuron does not fire. (b) RIGHT. The neuron is now stimulated with q = 0.1 applied every t = 2
timesteps, and therefore it fires.

... Show the relationship between output and input frequencies. Connection with sigmoid.
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1.2 Synaptic weights

Neurons are connected to each other through synapses. We simulate the synaptic weight w that
corresponds to the concentration of a generic neurotransmitter in the synapse in time-steps as well.
The value of the weight, w, lies between 0 and 1. If the output of neuron i feeds into an input
of neuron j, the synaptic weight is denoted by wij . When neuron i fires, a fraction of the action
potential wij/

∑
k wik is transmitted to neuron j. k is an index that runs over all the other neurons

that neuron i feeds into.
The weight of a synapse is reinforced every time a signal passes through it. The reinforcement

is implemented as an increase of the weight w by α(1−w). This is a form of Hebbian learning that
implements unsupervised learning in the neural network. The weight also decays by a factor of β
at every time-step.
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